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Vortex Generator Installation Drag on
an Airplane Near Its Cruise Condition

Kazuhiro Kusunose* and Neng J. Yu®
The Boeing Company, Seattle, Washington 98124

A method is discussed for predicting the drag increment caused by the installation of a blade-type vortex
generator (VG) on a transonic-transport airplane. The original Nash and Bradshaw magnification concept of
roughness drag is extended to cover compressible flows and then is applied to VG blades to estimate the VG
installationdrag on an airplane. The drag of a VG blade placed on a wing will be amplified due to the growth of the
boundary layer with distance along the wing surface. Nash and Bradshaw showed that the degree of magnification
cannot be approximated simply by the ratio of local to freestream dynamic pressure (q effect). To demonstrate the
magnification effects, some VG installation drag analyses for transonic-transport airplane models are performed
using the new magnification factor formula. It can be seen that the agreement between these predicted drag
increments and the wind-tunnel test results is good, but the drag increment based on the g effect is seriously

underestimated.

Introduction

N this paper, we will discuss a new method for predicting the

drag increment caused by the installation of a blade-type vor-
tex generator (VG) on a typical transonic-transportairplane wing.
Specifically, we will address the drag penalty on the airplane caused
by the VG installationas the airplanenears its cruise condition. Nash
and Bradshaw' pointed out that the increase in profile drag of an
airfoil due to an isolated roughness element is, in general, different
from the drag of that element measured on a flat plate with the same
freestream velocity. They also showed that the drag incrementbased
on the ratio of local to freestream dynamic pressure may be seri-
ously underestimated. Generally, magnification effects are caused
not only by the pressure changes along the airfoil surface but also
by the boundary-layer development downstream of the roughness
element.

Taking the magnification effects into account, we developed a
method to predict the installation drag of VG blades on a high-
aspect-ratio transonic wing. In this new method, the original Nash
and Bradshaw (two-dimensional) magnification concept! of rough-
ness drag was extended to a three-dimensional,isolated roughness
element by employinga strip theory. Then, the concept was applied
to an isolated VG blade placed on a transonic transport airplane
wing. During the course of the analysis, only turbulent boundary
layers were considered. We will show that the original Nash and
Bradshaw concept (for incompressible flows) is also applicable to
high-subsonic flows.

The limitation on this method is that the sizes of the VG blades
mustbe small enoughso thatthe VG bladesdo not affectthe pressure
distributionover the remainder of the wing. Because VG heights are
designed to be at the same order as that of the boundary layer thick-
ness, and because VGs are carefully installed on the wing so that
their installations not impact the wing pressure distribution as long
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as the flow around the wing is attached, this restriction will be nat-
urally satisfied near the model design conditions. The detailed flow
changes, in the immediate neighborhoodof VG, are not considered
here, and the gross effect on the boundary layer is, as discussed in
Ref. 1, idealized into a step change in momentum thickness A8.

Spence’s> Momentum Thickness Equation

Spence? solved von Kdrmdn’s momentum-integral equation (in-
compressible) along a two-dimensional turbulent boundary layer

d9+<H+2)9dU_
dx Ude

Tu
pU?

ey

where 6, U, and H are the momentum thickness of the boundary
layer, the flow velocity at the outer edge of the boundary layer,
and the ratio of displacement to momentum thickness (6*/6), re-
spectively. Here, x is the distance measured along the surface, and
7, and p are the surface shear stress and the density of the fluid.
Applying an empirical skin-frictionrelation for turbulent boundary
layers,

7,/pU? 2 0.00883(U§/v) =2 (2)
and approximating H = const 1.5, Spence looked for an ordinary
differential equation in the following form:

d
_(gaUﬁ) ~ U 3)
dx

It was shown in Ref. 2 that the combination of the constants,
a=1.2,=42,and y =4, or

d
d_(91,2U4,2) — 0.01061)0,2[]4
X

@
satisfies von Karmdn’s momentum-integral equation. Here v is the
kinematic viscosity. Integrating Eq. (4) along the boundary layer
from some initial station x;, to x, one can obtain the growth of the
momentum thickness 6 with x for the two dimensional turbulent
boundary layer in incompressible flow:

X

6'2U*? = 62U + 0.010602 / U* dx (5)

X0

Although Spence’s momentum thickness equation (5) is origi-
nally derived for incompressible turbulentboundary layers, it is not



1146 KUSUNOSE AND YU

difficult to see that his solution also satisfies the momentum-integral
equation for compressible turbulent boundary layers,

do , 6 dU ve\ "
— 4+ (H+2— M*)—— =0.00883( — 6)
dx U dx v

as long as the following condition
H-M*~15 (7

is satisfied. Therefore, for the same order of approximation that
Spence made for incompressible flows (H 2 1.5), solution (5) is
also valid for attached turbulentboundarylayers (1.5 < H <2.5)up
to high-subsonic flow speed (M < 1). Here, M is the Mach number
outside of the boundary layer.

Nash and Bradshaw Magnification Concept!

Nash and Bradshaw' used Spence’s momentum thickness growth
equation (5) to estimate the magnification of an isolated roughness
drag caused by the pressure gradientsalong the airfoil surface down-
stream of the roughness element. A brief summary of their method
is given here.

If Urg and O1g are the velocity outside of the boundary layer and
the momentum thickness at the trailing edge on that surface of the
airfoil, 6rg can be estimated by Eq. (5),

XTE
Or Uz = 6,2Uy? + 0.01060°2 / U dx ®)

X0

where the subscript zero denotes conditions at some initial station.

Now consider that, due to an isolated roughness element at point
X = Xy, the momentum thickness increased from 6, to 6, + A#6,.
It will be assumed that the step change in momentum thickness
due to the roughness element is small compared to the undisturbed
momentum thickness, A6y << 6y, so that the velocities outside the
boundary layer remain unchanged. The corresponding change in
OrE, thatis, Afrg, can be expressed in terms of Afy:

XTE
(61 + ABp)'2ULE = (6 + ABy)'2US? +0.01060°2 / U*dx
X0
®)
Subtracting Eq. (8) from Eq. (9) yields

[6r + A61e)'? — 0,2 |USE = [0 + A0 — 6,2 ]Us2 (10)

When the definition of the derivative of a function of 6, that is,
F@©),is

dF(9)
F(@—l—A@)—F(G):TA@ (11)

or

1.2

de
O + A — 912 ~ —QAG = 1.20°2A0 (12)

is kept in mind, Eq. (10) reduces to

1.2092 A6re Uz = 1.2092 AGyU? (13)

Ao [ 6, 0.2 U, 42 )
Aby bre Urg

Because Spence’s momentum thickness equation (5) has been ex-
tended to high-subsonic flow in the preceding section, remember
that this Nash-Bradshaw momentum thickness growth relation (14)
is also applicable to high-subsonic flow. Following the method of

Squire and Young® and Cook* for compressible flow, the profile
drag of the airfoil is related to the total momentum thickness at the

or

trailingedge. It can be shown that the increase in the drag coefficient
of the airfoil, ACp, due to the roughness element is expressed as

AbBrg (MTE) (HTE + Hoo +4)/2(1 + 0.21‘4;)(1.1“:.+Hoc+ 14)/4

c 1+0.2M2,

ACDZZ MOQ

(15)
where H,, =1+ 0.4M2 and C represents the chord of the airfoil.
In Eq. (15) the value 1.4 has been used for the ratio of specific heats
for air, y. Substitutingthe relationshipbetween A6rg and A6, given
by Eq. (14) into Eq. (15), we can obtain

A6y [ 6y 0.2 U, 42 Mo (HTE +0.4M2, +5)/2
ACp=2——| — —_
C \ O Ute M,

. O.ZM; (HrE +0.4M2, +15)/4
w [ ———— 0
1+ O.ZM%E

Now, we assume that the values of the drag coefficient of
the particular roughness element have been obtained from mea-
surements on a flat plate along which the increase in momen-
tum thickness in the absence of the element could be neglected
[6p =601 or (8y/6re)’? =~ 1]. Then, the increase in drag coeffi-
cient of the flat plate airfoil is directly proportional to the in-
crease in momentum thickness due to the roughness element. Let
(60/61£)*? =1, Uy = Urg, and Mg = M; Eq. (16) yields

(16)

ACp =2(A6,/C) = Cp; (17)

where Cp; is the increment of drag coefficient of a flat plate airfoil
due to the roughness element installation. Then Eq. (16) reduces to

0.2 42 (HTE + 0,4M§c +5)/2
Ac. —c 2o Uy M\
D= %Yo\ 77— I
Ore Ure M,

( |+ 02M2 )(HTE+U,4M§C+ 15)/4
w [ ———— 0

18
1+ 0.2M% (18)
It is clear that the quantity
o o 02 Uy 42 Mg (Hrg +04M2, +5)/2
e Urg M
140202 (Hrg +0.4M2, + 15)/4
X | —= (19)
1+02M2%,

in Eq. (18) represents the magnification of the drag of the roughness
element. The drag of the roughness on an airfoil is amplified due to
the growth of the (turbulent) boundary layer with distance along the
airfoil surface. Combining Eqs. (18) and (19), we finally obtain

ACD = mCDf (20)

When the isentropic flow relations and the definition of the speed
of sound

ol

T Usanw  Uo \1+02M2

Mg Urg ay U (1+ O.ZM%E
Moo Uoo arg B Uoo

are used, the magnification factor given in Eq. (19) can be rewritten

00 02 UU 4.2 UTE (HTE +0.4Mg, —3.4)/2
m=\-— eyl e
QTE Uoo Uoo

1+02M2\">
x [ 1)
1+ 0.2M2,

For incompressible flow (Mg, M, — 0) Eq. (19) reduces to the
original Nash-Bradshaw form,'

Mincomp = (60/618)** (U /Uno)*? (Urg /Uoo) e 3972 (22)
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Generalized Magnification Factor for VGs

For the purpose of a crude estimation of VG installation drag on
an airplane, we assume that the VG blades installed (in the turbulent
boundary-layerregion) on a model wing do not affect the pressure
distribution over the remainder of the wing. Generally, this pres-
sure condition will be satisfied when the flow around the wing is
attached, for example, as the airplane nears its cruise condition, and
the VG height / is of the same order as that of the local boundary-
layer thickness §, for example, /8§ < 2. Then, when a strip theory
is employed, the Nash and Bradshaw (two-dimensional) drag mag-
nification concept' can be extended to a three-dimensional small
roughness element (such as a trip strip’ or a VG blade), that is
installed on a constant wing section as shown in Fig. 1 (or on a
high-aspect-ratio wing). Integrating Eq. (20) along the wing span
direction y and using Eq. (17)

/qCACDdy=/ quCDfdyzm/ qCCpsdy
Y1

n A1

= m/ 2q A6y dy
y1
one can obtain
AD =mD; (23)

where AD and D/ represent the drag increments of the wing and
the equivalent flat plate wing due to an isolated roughness element
installedon them. Here ¢ and C are the freestreamdynamic pressure
defined by po U2 /2 and the local wing chord, respectively.

Similarly, the incrementin airplane drag due to the installation of
an isolated VG on the wing (VG installation drag), A D,,, will be,
in general, expressed by

ADy, =MDy, (24)

where D, denotes the drag increment of the flat plate wing due to
a single VG blade installed on it. M, is a generalized magnification
factor that is an extended form of the Nash and Bradshaw’s factor,
and its derivation will be given shortly. M, will be a function of
the flow variables measured along the wing section on which the
VG blade is located (an equivalent two-dimensional wing section
as shown in Fig. 2). We define the VG installation drag coefficient
of the wing, ACp,, and the drag coefficient of the isolated VG
blade placed on the flat plate wing (which has been assumed to be
obtained through measuring drag increments of the flat plate wing),
Chpyyg» as

ACpyy = ADyy/qS (25)
and
Cvag = vag/qug (26)

where S and S,, are areas of the model wing and VG blade, respec-
tively. When Eqs. (25) and (26) are substitued into Eq. (24), the

Fig. 1 Extension of two-dimensional drag magnification concept to a
three-dimensional roughness element; large aspect ratio (constant wing
section) wing, strip theory.

Fig. 2 Wing section on which magnification factor needs to be evalu-
ated; single VG installed on a large aspect ratio wing.

increment in drag coefficient due to a single VG on a wing (single
VG installationdrag), ACp.,, can be expressed by

AC‘Dvg = MgCvag(Svg/S) (27)

The derivation of the generalized magnification factor M, is now
shown. For applicationsof Nash and Bradshaws drag magnification
concept! to VG blades, note a fundamental difference between a
roughness element and a VG blade. For a roughness element, the
major part of its drag consists of profile drag, butdrag of a VG blade
consists of both profile and induced drag. The purpose of installing
VG blades on a wing is to generate trailing vortices for promoting
boundary-layer mixing along the wing surface. As we reexamine
the equations Nash and Bradshaw used in deriving their original
drag magnification concept, we can see that they did not consider
an induced-drag component, so their concept is valid only for the
profile-drag component of the VG blade.

Because the induced drag of a wing (with an elliptic lift distribu-
tion) is proportional to the dynamic pressure of the oncoming flow,
it is reasonable to assume that the induced drag coefficient of the
VG blade placed on a wing will be magnified by the ratio of local
to freestream dynamic pressure (¢ effect). Now approximate Cp;,
by the sum of profile and induced drag coefficients of a VG blade
installed on a flat plate wing,

Cvag = CvagP + CvagI (28)

The VG installation drag coefficient on the wing, ACp,, can be
written as

ACDvg = [CDf vgPMyg + CDf vel (pvg/poo)(Uvg/Uoo)z](Svg/S)
= Cvag { (CvagP/CDf vg)mvg

+[1 = (Copver/Ciyve)l(pve/ o) Use/Uno)* }(Sue/S) (29

where m,, is Eq. (21), the extension of the Nash and Bradshaw
magnification factor. Comparing Eqs. (27) and (29), one can obtain

Mg = (CvagP/Cvag)mvg

+ 11 = (Cprver/Cprve)l(Pug/ Poo) Use/Uss)? (30

Up to this point, we have not discussed the key effects of VGs
on the wing boundary layer. The primary purpose of installing VGs
on a wing is to promote mixing of the flow along the wing surface
to obtain a healthier (but thicker) wing boundary layer. During this
mixing process, a good portion of the induced drag of the (well-
designed) VG blade will be converted to an additional profile drag



1148 KUSUNOSE AND YU

of the wing, resulting in the increase in the skin friction of the
wing. Therefore, for the sake of simplicity of the analysis consider
a fictitious case in which a VG blade is installed on a (fictitious)
inviscid flat plate wing. Then, we assume that the drag increment of
the flat plate wing, Cpy,, is simply equal to the sum of the profile
and induced drag of the VG blade (which is placed on the inviscid
flat plate wing):

Cvag = CDf vgP = (CvagP + CvagI)invfp (31)
Finally, we can obtain [from Eq. (30)]
M, ~m,, 32)

It is important to note that the extended Nash-Bradshaw magnifi-
cation factor m,g, given in Eq. (21), is still applicable to the case of
the increased skin friction due to the VG installation, as long as the
increment of the skin friction is linearly proportional to the original
value of the skin friction given in Eq. (2).

Because the actual VG blades are placed in a boundary layer,
the effective (wetted) VG area should reduce due to the boundary-
layerdisplacementthicknessd*. Knowing thaté*/é >~ % foratypical
(flat plate) turbulent boundary layer® and that the VG height & is of
the same order as that of the local boundary-layer thickness 8, we
can estimate the effective VG height as h — §* ~0.90 x & (i.e.,
the effective VG area is about 0.90 * S,). Finally, with the help of
Eq. (32), Eq. (27) can be written as

AC‘Dvg = FmngDf vg(Svg/S) (33)

where F is the correction factor for the effective VG area, and its
value should be around 0.9 (¥ > 0.9) for turbulentboundary layers.

Simplified Magnification Factor for VGs

Now, we are going to simplify the magnification factor given by
Eq. (21), focusing on its VG applications. The values of the flow
velocity U/U,, and Mach number M at the VG location and the
trailing edge of the wing section (on which the VG is located) can
be simply calculated from the known pressure coefficients, C,, on
the wing, by using the isentropic flow relations given in Ref. 7, for
example, for air, y = 1.4,

o=

U 5 c
T {1 - M—g@[(OJCpM; +1)7 - 1]} 34
%
M= o5 | 2E0AM (35)

[ Y

(0.7¢,M2 +1)

However, in general, it is difficult to estimate the (equivalenttwo-
dimensionalturbulent)boundary-layerproperties6 and H atthe VG
locationand the trailing edge of the wing section (an equivalenttwo-
dimensionalairfoil section, as shownin Fig. 2). For the estimationof
these values, it is necessary to solve an appropriate two-dimensional
turbulent boundary-layer equation for this particular wing section
as if it did not have a VG.

For a crude estimation of VG installation drag on a high-aspect-
ratio wing near its cruise condition, we assume that VG (chordwise)
locations on the wing will be, typically, 10 and 20% chord down-
stream from the leading edge of the (traditional transonic-transport)
wing and that the turbulent boundary layer on the baseline wing
(without VGs) is attached. Based on these assumptionsand by use of
some preliminaryresults from (turbulent)boundary-layeranalyses ?
it is reasonable to estimate ranges of values of 6,, /0 and Hrg
to be

Bug/ 1 = 1/10 ~ 1/30 (36)

Hpp=1.4~18 (37)

Then the range of (6ye/6re)"? is
0.5065 < (0,¢/67)°? < 0.6310 (38)

To be conservative for the estimation of VG installation drag, we
may choose

(6 /016)"* >~ 0.60 (39)
Hp >~ 14 (40)

When Eqgs. (39) and (40) are substituted into Eq. (21), the magni-
fication factor for an isolated VG on a transonic-transportairplane,

m.,, can be approximated as

Us 4.2 Us 1.0-02M% 14 O.ZM; 25
my, = 0.60 == T 41)
Uy Urg 1+02M5,

For incompressible flow, M., M., and Mg — 0, Eq. (41) reduces
to the original Nash-Bradshaw formula,' then

mvgfincomp = 060(Uvg/Uoo)42(Uoo/UTE) (42)

Note that from Eq. (41) [or Eq. (42)] the magnification m,, occurs
when the velocity ratio U,,/ Uy is greater than unity and that the
magnification is larger than the ratio of local to freestream dynamic
pressure (¢ effect), which is proportional to (Uy,/Ux)*. Because
the velocity ratio appears in Eq. (41) to the power 4.2, the degree
of magnification based on the g effect could be seriously underesti-
mated for the VG applications on a lifted wing.

Drag Coefficient of an Isolated VG

To use Eq. (33) for the calculation of installationdrag of a single
VG blade on a wing, it is necessary to estimate the drag coefficient
of the isolated VG blade placed on a flat plate wing, Cpyy,. As
discussedin the precedingsection[see Eq. (31)],ithas been assumed
that the value of Cp, can be estimated as the sum of the profile
and induced drag of the isolated VG blade placed on an inviscid flat
plate. In general, aspect ratios of VG blades are small (AR <1.0)
and their optimum incidence angle, «,, (Fig. 3), is around 20 deg

h

s

ﬁ

a) Corotating VGs

/L hoP
/ / % / > ¢
i
zl ~«
b) Counterrotating VGs
Fig. 3 VG features and notation.
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a) Triangle

b) Rectangle

¢) Gothic

d) Trapezoid
Fig. 4 Typical VG blade planforms.

(Refs. 8—10). When it is known that the flow around a small-aspect-
ratio wing with a large incidence angle will separate (generating
leading-edge vortices)'''? Cp;, can be estimated using a leading-
edge-suctionanalogy developed by Polhamus'>'# as

Cprvg = Cptanay, (43)

where C; is the lift coefficient of an isolated VG blade with an angle
of attack of ay,.

Next, we will discuss how to estimate lift coefficients for two
of the commonly used VG shapes; rectangular and triangular (see
Fig. 4 for the definitions of VG shapes). For other VG shapes (e.g.,
Gothic, trapezoidal), their lift coefficients can be approximated by
taking a simple average of those from rectangular and triangular
VGs.

Triangular-Shaped VG

A triangular-shapedVG blade (with height /2 and length /), placed
on an inviscid flat plate with local flow incidence angle oy, is aero-
dynamically equivalentto a delta wing (Fig. 4) with a wing span 2h
and wing area il and an angle of attack of «, Polhamus'*'* has
shown (for incompressible flow) that the lift coefficient of a delta
wing can be estimated by

C. = K,sina,, cos’ oy + K, cosay, sin® Oy (44)

where K, and K, are functions of aspect ratio of the delta wing.
In Refs. 13 and 14, they are plotted (also see Fig. 5). Employing
best fit curves for these K, and K, data, these parameters can be
approximated for small-aspect-ratiowings (0 < AR <2) as

K,=15AR — 0.2(AR)? (45)
and
K, =3.14+0.03AR (46)

For example, for a triangular-shaped VG with a length-height
ratio of 4 (I/ h = 4), the aspectratio of the equivalent delta wing is,
AR = 1.0 and let the flow incidence angle be 20 deg (a,, =20 deg).
K,, K,, and C;, can be calculated from Eqs. (44-46):

K, =1.30, K, =3.17, C, =0.741 47
Then we can calculate Cp ¢, from Eq. (43):

Cpyve = 0270 (48)

Efeanam: i imans 5|

30

25

20

ond
KV

e T
T T T
t T
I 5

o .5' T 10 15 20 2.5 30 35 4.0
AR (ASPECT RATIO)

Fig. 5 Variations of K, and K, for delta wings.!3

0.8

0.7F

S5 $ Rectangular Wings

05 \—Experiment (Lamar - NASA TR R-428)

L ! 1 1 | 1

0 0.2 0.4 0.6 0.8 1.0
AR (ASPECT RATIO)

Fig. 6 Cp coefficient for rectangular wings, o = 20 deg and M = 0.2
(Ref. 14).

Rectangular-Shaped VG

Similarly, a rectangular VG (with height # and length/ as shown
in Fig. 4), placed on an inviscid flat plate with local flow angle o,
(see Fig. 3), is equivalent to a rectangular wing with a wing span
2h and wing area 2!/ and an angle of attack o,. Johnson et al.'3
calculatedand plotted C; for a rectangularwing with a small aspect
ratio (0.2 < AR <1.1) and an angle of attack of 20-deg (see Fig. 6).
Using a best-fit curve the plot in Fig. 6, lift coefficients of small-
aspect-ratiorectangular wings can be approximatedas a function of
aspect ratio:

C, =0.3117+ 0.6850AR — 0.2167(AR)* (49)

When the wing incidence angle o, is not exactly 20 deg, C, canbe
estimated using either the experimental or analytical results given
in Ref. 16, or we could simply use a linear extrapolation (for a good
estimation)

CL = (CL)ocvg:zo(avg/zo) (50)

where (Cp)a,,_» is the C;, calculated from Eq. (49).

Finally, usfng Egs. (50) and (43), Cpy v, for a rectangular-shaped
VG can be calculated. For example, C; and Cp, for arectangular
VG with a length—height ratio of 4 (I/h =4, hence, the 0.5 aspect
ratio of the equivalent rectangular wing) with its 20 deg incidence
angle will be

C,=0.600, Cps=0218 (51)
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Gothic and Trapezoidal-Shaped VGs

For a Gothic or Trapezoidal shaped VG (Fig. 4), C; can be esti-
mated using the C; of both triangular- and rectangular-shaped VGs.
As an example, for a Gothic-shaped VG with length-height ratio of
4(l/ h =4) with an incidence angle of 20 deg, an approximated lift
coefficient would be the simple average of the C; calculated from
the triangular-and rectangular-shapedVGs [referringto the C;, from
Eqgs. (47) and (51)]

Cp >~ (0.741 + 0.600)/2 = 0.671 (52)
and its drag coefficient Cpy,, would be

Cpyve = 0.671tan20 = 0.244 (53)

Mach Number Effect on Cp;,,

Generally, lift and drag coefficients of an isolated VG blade
(placed on an inviscid flat plate) are functions of the freestream
Mach number. Because the current C; and Cpy,, formulas were
derived forincompressible flows,!*~!% it is necessary to consider the
compressible flow effects on them for VG applicationsto transonic-
transportairplanes.

InRef. 17, K, and K, used for the C, estimation of triangular-
shaped VGs, were extended to cover compressible flows, and an
evaluationon this extendedleading-edgesuctionanalogy was given.
Additional comparisons between theoretical and experimental val-
ues of lift and drag coefficients were made for small-aspect-ratio
wings in Refs. 16 and 18, showing that the reduction in lift and
drag with the increasing freestream Mach number was well pre-
dicted by using the extended leading-edge suction analogy given
in Ref. 17. Because those theoretical and experimental results
given in Refs. 16-18 show that both the lift and drag coefficients
are nearly independent of Mach number up to a transonic flow
speed, it is reasonable to approximate them to be independent of
Mach number throughout the subsonic and transonic flow range.
For the sake of simplicity, we use the incompressible C, and
Cpsye formulas given by Eqs. (43-46) and (49) for the current
VG applications.

VG Installation Drag Estimation

In this section we will demonstrate how to estimate the VG in-
stallationdrag on a transonic-transportairplane using the airplane’s
given wing pressure distribution. The formula to use for the drag
estimation of a single VG installation is Eq. (33), where m,, and
Cpy v, are defined in Eqgs. (41) [or Eq. (21) for the exact value of
my,] and (31), respectively. If the chosen reference wing area is a
half of the (entire) model wing area, ACp,, represents the drag
(coefficient) increment due to a single VG installed on one side of
the model wing (two VGs would have been installed on the entire
model wing.)

For the calculation of the magnification factorm,,, itis necessary
to know the values of U/U and M at both the VG and trailing-
edge locations of the wing section on which the VG is (or will
be) installed. When the pressure distribution is known at this wing
section (obtainedfrom experimentsor computationalfluid dynamics
analyses, etc.), these values can be calculated from Eqgs. (34) and
(35). For demonstration, we chose a rectangular VG blade with
dimensions of / =3.78 in. (9.60 cm) and £ =0.94 in. (2.39 cm)
(I/ h ~4),and we assumed thatits incidenceangle was about 20 deg
and that VGs will be placed on each side of a transonicairplane wing
on which §=4605 ft> (427.78 m?). Arbitrarily setting the VGs
spanwise and chordwise locations to be 70 and 15%, respectively,
and the airplane’s operating Mach number and its Reynolds number
to be My, =0.83 and Re =45 x 10°, respectively, we proceeded to
estimate the VG installationdrag.

When the pressure distribution of the wing section on which
a VG is to be installed is known (e.g., Fig. 7), the pressure
coefficients at the VG and the trailing-edge locations can be
found for example, C,,, >~ —1.0 and C,1g 0.1, respectively.

Then, from Eqs. (34) and (35), we can obtain U,,/U,, =1.498,

VG location

Cp

T.E. location

T T T 1

0.0 0.2 0.4 06 08 1.0
XiC

Fig. 7 Sample pressure distribution, Mach 0.83 pressure data, cruise
alpha.

Urg/Us =0.950, M, = 1.366,and Mg = 0.783. Finally, the (sim-
plified) magnification factor m,, will be calculated from Eq. (41),

1.0 - 0.2(0.83)% 25
1 1 +0.2(0.83)2
My, = 0.60(1.498)% [ —— 1492083
0.950 14+ 0.2(0.783)

=3.543 (54)

When Cp v, =0.218is found from Eq. (51) for the rectangular VG
of I/ h =4, and (for our demonstration) S,, = 3.78 % 0.94 (in.?) and
S =4605/2 (ft*) for one side of the wing, VG installation drag will
be estimated from Eq. (33),

3.78 % 0.94

——————— =0.7449% 107
(4605/2) * 122 o*

ACpys =0.90%3.543 % 0.218 *
(55)

This ACp., represents the single-VG installation drag on one side
of a wing (or two VGs on the entire model wing). For a case of
multiple VGs installed on a wing, we can repeat the processes dis-
cussedin this section for each individual VG blade, and the total VG
installation drag on the airplane will be the sum of the drag from
each individual VG installation.

Results and Discussion

Some NASA Ames Research Center high-Reynolds-numbertest
results for VG applications on a transonic-transportconfiguration®
were analyzedusing the original Nash-Bradshaw' (incompressible)
magnification factor concept[givenby Eq. (22)]. To demonstrate the
magnification effects, predicted VG installationdrag based on sev-
eral differentmethods(indicatedby the linesin Fig. 8) was compared
with the tunnel balance data (symbols in Fig. 8). With reference to
Eq. (33), the y axisin Fig. 8, ACp /(S,,/S), represents the value of
Cpyyg * F % m, x number of VGs. If a single VG is installed on an
(fictitious) inviscid flat plate wing (¢y; = g and F = 1), the value
of the magnification factor will be one, and ACp /(Sy5/S) = Cpjv,-
When the g effectis considered, the drag incrementof the wing (due
tothesingle-VGblade)willbe Cp s * /¢ - Then, if the boundary-
layer magnification factor is applied to it, it becomes Cpyyg * Myg.
Note that the drag increments based on the g effect were seriously
underestimated. However, the drag increments predicted by using
the magnification factor agreed very well with the wind-tunnel data.
Also note that the correction of effective VG area due to the dis-
placement thickness of the turbulent boundary layer 6*(F 2 0.9)
yielded an additional improvement.

Currently, some VG installation drag analyses for a transonic-
transport,2.7% scalemodelin the National TransonicFacility (NTF)
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Fig. 8 NASA Ames Research Center high Reynolds number test re-
sults for a transonic-transport airplane, VG drag with C;, = 0.5, Re =
14 x 105, and (x/c)yg = 0.20.

at NASA Langley Research Center are performed using the simpli-
fied magnification factor formula.!® In the NTF, three differentsizes
of rectangular VGs (with length-heightratio of 4) correspondingto
different wind-tunnel Reynolds numbers (3 * 10°, 10.3 % 10°, and
40 % 10°) were tested at several transonic speeds (M, =0.70, 0.84,
and 0.87) (Ref. 20). The general agreement between the predicted
VG installation drag and the drag measured in the wind tunnel is
good. The discussions on the VG analysis are, unfortunately, not
given here, because specific results of this NTF test are considered
proprietary.

Conclusions

To predict the VG installation drag on transonic-transport air-
planes, the Nash-Bradshaw' magnification concept of roughness
drag was extended for compressible flows and used for the estima-
tion of the VG installationdrag. Note that the magnification occurs
when the velocity ratio (at the VG location) U,, / U is greater than
unity and that the magnification is larger than the ratio of local to
freestream dynamic pressure (g effect), which is proportional to
(Uyg/ Uso)?. Because the velocity ratio appears in the magnifica-
tion factor to the power of 4.2, the magnification based on the ¢
effect does not even qualify as a close approximation. To demon-
strate the current VG installation drag-prediction capability, some
VG installationdrag analyses for transonic transportairplanes were
performed, and these results were compared to wind-tunnel and
flight-test results.'
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